Transhumanist Elon Musk: Your Brain Will Get Its Own USB-C Port

Follow us on social media

Transhumanist Elon Musk: Your Brain Will Get Its Own USB-C Port

#ElonMusk is a consummate #Technocrat and #Transhumanist who seeks the merging of technology and the human body with the ultimate purpose of achieving immortality. His #Neuralink project experiments with #BrainMachineInterfaces (BMI) literally puts silicon in your skull and connects it to the outside world.

Your brain, with a USB-C port in it. That’s Elon Musk’s vision for Brain Machine Interfaces (BMI). In a controversial July 2019 white paper he claimed that his company Neuralink had taken a huge step towards building a “scalable high-bandwidth BMI system” that would let the human brain “stream full broadband electrophysiology data” to a network, using a combination of ultra-fine polymer probes, a neurosurgical robot that sews them into the brain, and custom high-density electronics.

A “single USB-C cable provides full-bandwidth data streaming from the device” the paper noted: the device having been stitched, in theory, to your cerebral cortex. Neuroscientists were varying shades of intrigued, appalled and dismissive: the custom hardware would only pick up noise, they suggested: interpretation of brain waves simply wasn’t that advanced; the ethical issues were pronounced; the body would reject this level of intervention; where was the peer review of the paper?

A year later, Musk has promised a Neuralink update.

This was cryptically announced by Musk in July 2020, with the Tweets: “If you can’t beat em, join em Neuralink mission statement” and “Progress update August 28”. Ten days ahead of the reveal, we decided to take stock of Neuralink’s work’s and the ongoing discussion around the potential of BMI; speaking to a range of specialists in the sector about where the work was going and how realistic Musk’s vision was.

Neuralink began as a way to advance the technology of BMI: described by one organisation, the #MayoClinic, as a technology that “acquires brain signals, analyses them and translates them into commands that are relayed to output devices that carry out desired actions”

(Many observers suspect that the pending update will have to do with the “analyse them” part of that statement, and Musk’s “if you can’t beat ’em” statement refer to his well-documented concerns about the power of AI.)

These “desired actions” could be how to move a wheelchair without the use of your arms or how to control bionic limbs: “It is plausible to imagine that a patient with spinal cord injury could dexterously control a digital mouse and keyboard” wrote Musk in the 2019 paper. “When combined with rapidly improving spinal stimulation techniques, in the future this approach could conceivably restore motor function. High-bandwidth neural interfaces should enable a variety of novel therapeutic possibilities”.

While this might be the starting point for Neuralink, the ambitions of those working closely on BMI include, for some, the hope that technology could eventually to be used to connect the human race via a bona fide “neural network”; allowing people to communicate using thoughts and images rather than words, and even give over their motor function to others, with their consent*. The ideas behind this have their roots in a dizzying transhumanism. Meanwhile, very physical issues have remained a hurdle…

The most commonly used invasive BMI chip, the Utah Array, comprises an electrode with tiny, incredibly sharp silicone needles, that are pushed into the brain, after some skull has been cut away. There are less invasive ways of collecting data on brain activity but in general terms, the more invasive the technology, the more data from the brain scientists can catch. Neuralink’s tech is similar, but designed to gather even more data on how the brain works. The electrodes are long threads rather that short needles, allowing it to follow contours, and sewn into the brain rather than placed on top.

(Musk’s robot can accurately sew six sensor threads, or electrodes, per minute into the human brain, via small holes in the skull: “The robot registers insertion sites to a common coordinate frame with landmarks on the skull, which, when combined with depth tracking, enables precise targeting of anatomically defined brain structures. An integrated custom software suite allows pre-selection of all insertion sites, enabling planning of insertion paths optimised to minimise tangling and strain on the threads.”)

These sorts of advancements in BMI have been largely avoided by neuroscientists at any significant scale due to their invasiveness; although testing on rats and chimpanzees is happening. The consequences of getting things wrong are significant. As Dr Henry Marsh, a leading English neurosurgeon, warned in one interview after the initial paper was published: “The brain does not heal in the way bone and muscle and skin heals. Every time you cut the brain you damage it, and it won’t recover…”

However, there are varying degrees of damage depending on the materials used. Co-founder and CSO of full stack neural interface platform BIOS, Oliver Armitage, explained the differences to Computer Business Review as follows: “With the existing material, when you’re using stiff materials like silicone, silicone substrates and metals, the finer and pointier and deeper into the tissue you go, the more damage you create. With some of the newer technologies based on soft polymer electrodes, that trade-off [between invasiveness and accuracy of data] doesn’t really hold anymore”.

With these new, somewhat less invasive, cutting edge sensors, Musk also hopes to cure those who need treatment with BMI technologies successfully enough to move on to pioneering recreational use. Here is where the academics are divided. Ideally in the next 50 years some BMI advocates hope to equip those who can afford it with tech that will ostensibly enable them to communicate without speaking, access a “hive mind” for any information they need and sense their houses and the appliances in them as easily as if they were on their bodies: no more “Alexa, do this…”, or “Hey Google…” You just think it and it happens: an “Internet of Things” in which you are at one with the things.

“The idea would be instead of you and I talking right now, we would somehow link up our brain signals and ‘poof’, everything that you needed to know would come from me” explained Dr Robert Kirsch PhD, Chairman of the Department of Biomedical Engineering at the Case Western Reserve University and Executive Director at the Functional Electrical Stimulation (FES) centre in Cleveland.

He noted: “I’m not sure that that’s the right path” (to go down with this kind of innovation). “There are many things that they can do with this technology to improve human life. But it may not be in [its use for things like] social media. I think that that’s a simplistic view. I think the the notion that we’re going to take the machines into our minds, that otherwise they are going to take over because we communicate too slowly. They didn’t really need to do that. There’s a lot of need for brain interfacing that has nothing to do with making Facebook work better”.

Neuralink update eagerly awaited, but “the brain is very complex… “

Postdoctoral researcher at Swiss Federal Institute of Technology in Zurich, Giacomo Valle, who has a PhD in Biorobotics, explained the difficulties neuroscientists meet in actually decoding the data picked up by the electrodes: “Technology, at a certain point, will arrive at a limit because we have thousands and thousands of hundreds of thousands of neurons, and our electrode has hundreds of active sites or maybe thousands or maybe ten thousand. But that’s not enough to record each neuron in your brain. We also have other techniques now, like deep learning or machine learning, to decode motor intention, so we are growing in terms of technology. But the brain is very complex and we are still far from decoding exactly all of its interactions. To read your feelings and your mind, that this is something that is not possible”.

But something like it may be possible, even within a 15-year time frame, according to BIOS CEO Armitage: “To get to the point where people can telepathically communicate information in very short periods of time by communicating through series of images? I think that’s technically feasible over a 10 to 15 year timescale.”

Dr Kirsch and Armitage agree that the innovations in the technology itself are pretty ground-breaking: “The system that Elon Musk has developed is extremely promising” said Dr Kirsch. “And it would enable us to do things that we cannot do right now. The electrodes that we use now are in an array and they’re all the same length. You press them down on the surface of the brain, they only go in a millimetre and a half. Luckily, it hits important places in motor control. However, your brain’s big, and there are a lot of areas that are very important that we can’t simply reach.

“[The cerebral cortex] has valleys and hills and we can’t get into any of those valleys”.

Neuralink’s sensors have been designed to get data from these valleys in the cerebral cortex. As Dr Kirsch continued: “His electrodes will go there. They’re long and they have multiple recording contacts along the length, we just have one. He hired some really top notch scientists to develop that. I think it has huge potential”.

The Signal and the Noise

The problem is, while it may seem preferable to field as much data as possible to learn more about how the brain works, there is not much information out there as to how to decode the brainwaves once they have been recorded. This, however, is the vocation of the company BIOS and the passion of Christopher Armitage.

As he puts it: “The point of a neural interface is to transfer information in and out of the nervous system. The nervous system is data flowing around the body. If the genome is the body’s hard drive, the nervous system is the body’s Internet. The nervous system is like the real time information that’s moving around the body, telling an organ what to do. Fundamentally, it’s a data transmission system.

“Our core focus is on information conversion; being able to analyse vast amounts of neural data in order to understand what it means and then put information back in, in order to change it once you’ve understood it…

He adds: “There are nerves going to every single organ, telling the organ what to do and providing information back to the brain about what that organ is doing at that point in time. The health care usage of this is to interact with those nervous system signals, understand them using machine learning based on large neural datasets. And then when you change one of those signals, you can change the organ function and hence treat a disease. The reason this is used as a therapy, is that if you block a signal that’s going from the brainstem to the heart to cause it to beat harder in order to raise the blood pressure, if you block that signal out, you can lower someone’s blood pressure, neurally”.

Where does AI enter into this? “We use AI for decoding and encoding the nervous system, both understanding the data and putting information back in, generating a stimulation and then generating activity in the nerves that looks natural”.

Data from the brain gets broken down into different neural phrases, which when linked to the actions they provoke, can be strung together to create a precise neural pathway that can be understood by the brain and translated into a function, written into the brain, by researchers at BIOS: “We think about that as a neural language. It’s like building a language translator between a language that you don’t know, all you know is what happens afterwards. From that you have to decode all the words.”

While these innovations are pioneering, exciting, and clearly have therapeutic potential, could BMIs should be used recreationally in future?

Related Articles

The HPV Vaccine: An Ethical Dilemma

In 2014 there were numerous reports of mass hysteria and mystery illnesses spreading around the small town of El Carmen De Bolivar, Colombia. According to an article published by CBS, there was a steady increase of young women being hospitalized in this small town, all of which reported the same symptoms of fainting, numbness and tingling of the hands and feet, and headaches. Speculations about the Gardasil vaccination arose, but were disregarded by the mayor of the town stating that “there is no evidence the vaccine, which has undergone extensive testing and regulation is to blame” (CBS, 2014). According to this statement, he is not necessarily wrong, because the clinical trials of this vaccine have been proven to have misleading conclusions due to errors in the study design.

COVID Reference

Six weeks after the third edition, the world has changed again.
The pandemic is raging in South America, particularly in Brazil,
Ecuador and Peru. SARS-CoV-2 is under control in China, but in
Iran it is not. And in Europe, where most countries have weathered
the first wave and open borders to save a compromised tourist season, is now wondering if and for how long this biological
drôle de guerre could last.

Science has moved ahead, too. We have seen a more complex
picture of COVID-19 and new clinical syndromes; the first data
from vaccine trials; first results from randomized controlled
drug studies; encouraging publications on monoclonal neutralizing antibodies and serological evidence about the number of people who have come into contact with SARS-CoV-2. Unfortunately, we have also seen the first science scandal with fake data published in highly ranked journals. And we face new challenges like long-term effects of COVID-19 and a Kawasaki-like inflammatory multisystem syndrome in children.

For quite some time, prevention will continue to be the primary
pillar of pandemic control. In future waves of the SARS-CoV-2
pandemic, we will focus on the conditions under which SARSCoV-
2 is best transmitted: crowded, closed (and noisy) places and
spaces. Although hospitals are not noisy, they are crowded and
closed, and the battle against the new coronavirus will be decided
at the very center of our healthcare system. Over the next
months and maybe years, one of all of our top priorities will be
to give all healthcare workers and patients perfect personal protective equipment.

Mass Exodus out of Big Cities on Both Coasts Taking Place

In all of U.S. history, we have never seen anything like “the mass exodus of 2020”. Hundreds of thousands of people are leaving the major cities on both coasts in search of a better life.  Homelessness, crime and drug use were already on the rise in many of our large cities prior to 2020, but many big-city residents were willing to put up with a certain amount of chaos in order to maintain their lifestyles.  However, the #COVID19 pandemic and months of #civilunrest have finally pushed a lot of people over the edge.  Moving companies on both coasts are doing a booming business as wealthy and middle-class families flee at a blistering pace, and most of those families do not plan to ever return.